FSA Geometry End-of-Course Review Packet Congruency Similarity and **Right Triangles**

Table of Contents	
MAFS.912.G-CO.1.1 EOC Practice	
MAFS.912.G-CO.1.2 EOC Practice	5
MAFS.912.G-CO.1.4 EOC Practice	7
MAFS.912.G-CO.1.5 EOC Practice	9
MAFS.912.G-CO.1.3 EOC Practice	
MAFS.912.G-CO.2.6 EOC Practice	
MAFS.912.G-CO.2.7 EOC Practice	16
MAFS.912.G-CO.2.8 EOC Practice	
MAFS.912.G-CO.3.9 EOC Practice	
MAFS.912.G-CO.3.10 EOC Practice	
MAFS.912.G-CO.3.11 EOC Practice	25
MAFS.912.G-CO.4.12 EOC Practice	
MAFS.912.G-CO.4.13 EOC Practice	
MAFS.912.G-SRT.1.1 EOC Practice	
MAFS.912.G-SRT.1.2 EOC Practice	
MAFS.912.G-SRT.1.3 EOC Practice	
MAFS.912.G-SRT.2.4 EOC Practice	
MAFS.912.G-SRT.2.5 EOC Practice	
MAFS.912.G-SRT.3.8 EOC Practice	
MAFS.912.G-SRT.3.6 EOC Practice	51
MAFS.912.G-SRT.3.7 EOC Practice	53

MAFS.912.G-CO.1.1 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses definitions to	uses precise definitions that are based on the	analyzes possible	explains whether a possible
choose examples	undefined notions of point, line, distance along	definitions to determine	definition is valid by using
and non-examples	a line, and distance around a circular arc	mathematical accuracy	precise definitions

- Let's say you opened your laptop and positioned the screen so it's exactly at 90°—a right angle—from your keyboard. Now, let's say you could take the screen and push it all the way down beyond 90°, until the back of the screen is flat against your desk. It looks as if the angle disappeared, but it hasn't. What is the angle called, and what is its measurement?
 - A. Straight angle at 180°
 - B. Linear angle at 90°
 - C. Collinear angle at 120°
 - D. Horizontal angle at 180°
- 2. What is defined below?
 - _____: a portion of a line bounded by two points
 - A. arc
 - B. axis
 - C. ray
 - D. segment
- Given XY and XW intersect at point A.
 Which conjecture is always true about the given statement?
 - A. XA = AY
 - B. $\angle XAZ$ is acute.
 - C. \overrightarrow{XY} is perpendicular to \overrightarrow{ZW}
 - D. X, Y, Z, and W are noncollinear.

4. The figure shows lines r, n, and p intersecting to form angles numbered 1, 2, 3, 4, 5, and 6. All three lines lie in the same plane.

Based on the figure, which of the individual statements would provide enough information to conclude that line r is perpendicular to line *p*? Select **ALL** that apply.

 $m \angle 2 = 90^{\circ}$ $m \angle 6 = 90^{\circ}$ $m \angle 3 = m \angle 6$ $m \angle 1 + m \angle 6 = 90^{\circ}$ $m \angle 3 + m \angle 4 = 90^{\circ}$ $m \angle 4 + m \angle 5 = 90^{\circ}$

not to scale

5. Match each term with its definition.

А	A portion of a line consisting of two points and all points between them.
В	A connected straight path. It has no thickness and it continues forever in both directions.
С	A figure formed by two rays with the same endpoint.
D	The set of all points in a plane that are a fixed distance from a point called the center.
E	A portion of a line that starts at a point and continues forever in one direction.
F	Lines that intersect at right angles.
G	A specific location, it has no dimension and is represented by a dot.
н	Lines that lie in the same plane and do not intersect
	perpendicular lines
	angle
	line segment
	parallel lines
	circle
	point
	line
	ray

MAFS.912.G-CO.1.2 EOC Practice

Level 2	Level 3	Level 4	Level 5
represents transformations in the	uses transformations to develop	uses transformations to develop	[intentionally
plane; determines transformations	definitions of angles, perpendicular	definitions of circles and line	left blank]
that preserve distance and angle to	lines, parallel lines; describes	segments; describes rotations and	
those that do not	translations as functions	reflections as functions	

1. A transformation takes point A to point B. Which transformation(s) could it be?

2. The point (-7,4) is reflected over the line x = -3. Then, the resulting point is reflected over the line y = x. Where is the point located after both reflections?

- A. (-10,-7)
- B. (1,4)
- C. (4,−7)
- D. (4,1)
- 3. Given: \overline{AB} with coordinates of A(-3, -1) and B(2, 1) $\overline{A'B'}$ with coordinates of A'(-1, 2) and B'(4, 4)

Which translation was used?

- A. $(x', y') \to (x + 2, y + 3)$
- B. $(x', y') \to (x + 2, y 3)$
- C. $(x', y') \to (x 2, y + 3)$
- D. $(x', y') \to (x 2, y 3)$

- 4. Point P is located at (4, 8) on a coordinate plane. Point P will be reflected over the x-axis. What will be the coordinates of the image of point P?
 - A. (28,4)
 - B. (24,8)
 - C. (4,28)
 - D. (8,4)
- 5. Point *F*' is the image when point *F* is reflected over the line x = -2 and then over the line y = 3. The location of *F*' is (3, 7). Which of the following is the location of point *F*?
 - A. (-7,-1)
 - B. (-7,7)
 - C. (1,5)
 - D. (1,7)
- 6. ΔJKL is rotated 90° about the origin and then translated using $(x, y) \rightarrow (x 8, y + 5)$. What are the coordinates of the final image of point *L* under this composition of transformations?

- A. (-7,10)
- B. (-7,0)
- C. (-9,10)
- D. (-9,0)

MAFS.912.G-CO.1.4 EOC Practice

Level 2	Level 3	Level 4	Level 5
represents transformations in the	uses transformations to develop	uses transformations to develop	[intentionally
plane; determines transformations	definitions of angles, perpendicular	definitions of circles and line	left blank]
that preserve distance and angle to	lines, parallel lines; describes	segments; describes rotations and	
those that do not	translations as functions	reflections as functions	

1. The graph of a figure and its image are shown below. Identify the transformation to map the image back onto the figure.

- O Reflection
- O Rotation
- O Translation

- O Reflection
- O Rotation
- O Translation

2. If triangle ABC is rotated 180 degrees about the origin, what are the coordinates of A'?

A'(,)

 Darien drew a quadrilateral on a coordinate grid.
 Darien rotated the quadrilateral 180 and then translated it left 4 units. What are the coordinates of the image of point P?

P(,)

- 4. What is the image of M(11, -4) using the translation $(x, y) \rightarrow x 17, y + 2$?
 - A. M'(-6, -2)
 - B. *M*′(6, 2)
 - C. *M*′(−11, 4)
 - D. *M*′(-4,11)
- 5. A person facing east walks east 20 paces, turns, walks north 10 paces, turns, walks west 25 paces, turns, walks south 10 paces, turns, walks east 15 paces, and then stops. What one transformation could have produced the same final result in terms of the position of the person and the direction the person faces?
 - A. reflection over the north-south axis
 - B. rotation
 - C. translation
 - D. reflection over the east-west axis

MAFS.912.G-CO.1.5 EOC Practice

Level 2	Level 3	Level 4	Level 5
chooses a sequence of two	uses transformations	uses algebraic descriptions to	applies transformations that will
transformations that will	that will carry a given	describe rotations and/or	carry a figure onto another figure
carry a given figure onto	figure onto itself or onto	reflections that will carry a figure	or onto itself, given coordinates of
itself or onto another figure	another figure	onto itself or onto another figure	the geometric figure in the stem

- 1. Which transformation maps the solid figure onto the dashed figure?
 - A. rotation 180° about the origin
 - B. translation to the right and down
 - C. reflection across the x-axis
 - D. reflection across the y-axis

2. Ken stacked 2 number cubes. Each cube was numbered so that opposite faces have a sum of 7.

Which transformation did Ken use to reposition the cubes from figure P to figure Q?

- A. Rotate the top cube 180° , and rotate the bottom cube 180° .
- B. Rotate the top cube 90° clockwise, and rotate the bottom cube 180° .
- C. Rotate the top cube 90° counterclockwise, and rotate the bottom cube180°.
- D. Rotate the top cube 90° counterclockwise, and rotate the bottom cube 90° clockwise.
- 3. A triangle has vertices at A(-7, 6), B(4, 9), C(-2, -3). What are the coordinates of each vertex if the triangle is translated 4 units right and 6 units down?
 - A. A'(-11, 12), B'(0, 15), C'(-6, 3)
 - B. A'(-11,0), B'(0,3), C'(-6,-9)
 - C. A'(-3, 12), B'(8, 15), C'(2, 3)
 - D. A'(-3,0), B'(8,3), C'(2,-9)

- 4. A triangle has vertices at A(-3, -1), B(-6, -5), C(-1, -4). Which transformation would produce an image with vertices A'(3, -1), B'(6, -5), C'(1, -4)?
 - A. a reflection over the x axis
 - B. a reflection over the y axis
 - C. a rotation 90° clockwise
 - D. a rotation 90° counterclockwise
- 5. Triangle ABC and triangle DEF are graphed on the set of axes below.

Which sequence of transformations maps triangle ABC onto triangle DEF?

- A. a reflection over the x -axis followed by a reflection over the y -axis
- B. a 180° rotation about the origin followed by a reflection over the line y = x
- C. a 90° clockwise rotation about the origin followed by a reflection over the y –axis
- D. a translation 8 units to the right and 1 unit up followed by a 90° counterclockwise rotation about the origin
- 6. Quadrilateral ABCD is graphed on the set of axes below.

When ABCD is rotated 90° in a counterclockwise direction about the origin, its image is quadrilateral A' B 'C 'D'. Is distance preserved under this rotation, and which coordinates are correct for the given vertex?

- A. No and C'(1,2)
- B. No and D'(2, 4)
- C. Yes and A'(6, 2)
- D. Yes and B'(-3, 4)

MAFS.912.G-CO.1.3 EOC Practice

Level 2	Level 3	Level 4	Level 5
chooses a sequence of two	uses transformations	uses algebraic descriptions to	applies transformations that will
transformations that will	that will carry a given	describe rotations and/or	carry a figure onto another figure
carry a given figure onto	figure onto itself or onto	reflections that will carry a figure	or onto itself, given coordinates of
itself or onto another figure	another figure	onto itself or onto another figure	the geometric figure in the stem

1. Which transformation will place the trapezoid onto itself?

- A. counterclockwise rotation about the origin by 90°
- B. rotation about the origin by 180°
- C. reflection across the x-axis
- D. reflection across the y-axis
- 2. Which transformation will carry the rectangle shown below onto itself?

- A. a reflection over line m
- B. a reflection over the line y = 1
- C. a rotation 90° counterclockwise about the origin
- D. a rotation 270° counterclockwise about the origin

- 3. Which figure has 90° rotational symmetry?
 - A. Square
 - B. regular hexagon
 - C. regular pentagon
 - D. equilateral triang
- 4. Determine the angle of rotation for A to map onto A'.

- A. 45°
- в. 90°
- C. 135°
- D. 180°
- 5. Which regular polygon has a minimum rotation of 45° to carry the polygon onto itself?
 - A. octagon
 - B. decagon
 - C. decagon
 - D. pentagon
- 6. Which rotation about its center will carry a regular decagon onto itself?
 - A. 54°
 - B. 162°
 - C. 198°
 - D. 252°

MAFS.912.G-CO.2.6 EOC Practice

Level 2	Level 3	Level 4	Level 5
determines if a sequence of	uses the definition of congruence in	explains that two figures are	[intentionally left
transformations will result	terms of rigid motions to determine if	congruent using the definition of	blank]
in congruent figures	two figures are congruent; uses rigid	congruence based on rigid	
	motions to transform figures	motions	

1. Figure 1 is reflected about the x-axis and then translated four units left. Which figure results?

- A. Figure A
- B. Figure B
- C. Figure C
- D. Figure D
- 2. It is known that a series of rotations, translations, and reflections superimposes sides a, b, and c of Quadrilateral X onto three sides of Quadrilateral Y. Which is true about z, the length of the fourth side of Quadrilateral Y?

- A. It must be equal to 6
- B. It can be any number in the range $5 \le z \le 7$
- C. It can be any number in the range $3 \le z \le 8$
- D. It can be any number in the range 0 < z < 14

- 3. Which transformation will always produce a congruent figure?
 - E. $(x', y') \to (x + 4, y 3)$ F. $(x', y') \to (2x, y)$
 - G. $(x', y') \to (x + 2, 2y)$
 - H. $(x', y') \rightarrow (2x, 2y)$
- 4. Triangle ABC is rotated 90 degrees clockwise about the origin onto triangle A'B'C'. Which illustration represents the correct position of triangle A'B'C'?

- 5. The vertices of ΔJKL have coordinates J(5, 1), K(-2, -3), and L(-4, 1). Under which transformation is the image $\Delta J'K'L'$ NOT congruent to ΔJKL ?
 - A. a translation of two units to the right and two units down
 - B. a counterclockwise rotation of 180 degrees around the origin
 - C. a reflection over the x –axis
 - D. a dilation with a scale factor of 2 and centered at the origin
- 6. Prove that the triangles with the given vertices are congruent. A(3, 1), B(4, 5), C(2, 3)

D(-1, -3), E(-5, -4), F(-3, -2)

- A. The triangles are congruent because $\triangle ABC$ can be mapped onto $\triangle DEF$ by a rotation: $(x, y) \rightarrow (y, -x)$, followed by a reflection: $(x, y) \rightarrow (x, -y)$.
- B. The triangles are congruent because $\triangle ABC$ can be mapped onto $\triangle DEF$ by a reflection: $(x, y) \rightarrow (-x, y)$, followed by a rotation: $(x, y) \rightarrow (y, -x)$.
- C. The triangles are congruent because $\triangle ABC$ can be mapped onto $\triangle DEF$ by a translation: $(x, y) \rightarrow (x 4, y)$, followed by another translation: $(x, y) \rightarrow (x, y 6)$.
- D. The triangles are congruent because $\triangle ABC$ can be mapped onto $\triangle DEF$ by a rotation: $(x, y) \rightarrow (-y, x)$, followed by a reflection: $(x, y) \rightarrow (x, -y)$.

MAFS.912.G-CO.2.7 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies	shows that two triangles are congruent if and	shows and explains, using the	justifies steps of a proof
corresponding	only if corresponding pairs of sides and	definition of congruence in terms	given algebraic descriptions
parts of two	corresponding pairs of angles are congruent	of rigid motions, the congruence	of triangles, using the
congruent	using the definition of congruence in terms of	of two triangles; uses algebraic	definition of congruence in
triangles	rigid motions; applies congruence to solve	descriptions to describe rigid	terms of rigid motions that
	problems; uses rigid motions to show ASA,	motion that will show ASA, SAS,	the triangles are congruent
	SAS, SSS, or HL is true for two triangles	SSS, or HL is true for two triangles	using ASA, SAS, SSS, or HL

1. The triangle below can be subject to reflections, rotations, or translations. With which of the triangles can it coincide after a series of these transformations?

Figures are not necessarily drawn to scale.

2. The image of $\triangle ABC$ after a rotation of 90° clockwise about the origin is $\triangle DEF$, as shown below.

Which statement is true?

- A. $\overline{BC} \cong \overline{DE}$
- B. $\overline{AB} \cong \overline{DF}$
- C. $\angle C \cong \angle E$
- D. $\angle A \cong \angle D$
- 3. If $\triangle ABC \cong \triangle DEF$, which segment is congruent to \overline{AC} ?
 - A. \overline{DE}
 - B. \overline{EF}
 - C. \overline{DF}
 - D. \overline{AB}
- 4. If $\Delta TRI \cong \Delta ANG$, which of the following congruence statements are true?
 - $\Box \quad \overline{TR} \cong \overline{AN}$
 - $\Box \quad \overline{TI} \cong \overline{AG}$
 - $\Box \quad \overline{RI} \cong \overline{NG}$
 - $\Box \quad \overline{TI} \cong \overline{NA}$
 - $\Box \quad \angle T \cong \angle A$
 - $\Box \quad \angle R \cong \angle N$
 - $\Box \quad \angle I \cong \angle G$
 - $\Box \quad \angle A \cong \angle N$

MAFS.912.G-CO.2.8 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies	shows that two triangles are congruent if and	shows and explains, using the	justifies steps of a proof
corresponding	only if corresponding pairs of sides and	definition of congruence in terms	given algebraic descriptions
parts of two	corresponding pairs of angles are congruent	of rigid motions, the congruence	of triangles, using the
congruent	using the definition of congruence in terms of	of two triangles; uses algebraic	definition of congruence in
triangles	rigid motions; applies congruence to solve	descriptions to describe rigid	terms of rigid motions that
	problems; uses rigid motions to show ASA,	motion that will show ASA, SAS,	the triangles are congruent
	SAS, SSS, or HL is true for two triangles	SSS, or HL is true for two triangles	using ASA, SAS, SSS, or HL

1. Given the information regarding triangles ABC and DEF, which statement is true?

$$\angle A \cong \angle D$$
$$\angle B \cong \angle E$$
$$\overline{BC} \cong \overline{EF}$$

- A. The given information matches the SAS criterion; the triangles are congruent.
- B. The given information matches the ASA criterion; the triangles are congruent.
- C. Angles C and F are also congruent; this must be shown before using the ASA criterion.
- D. It cannot be shown that the triangles are necessarily congruent.
- 2. Zhan cut a drinking straw into three pieces (shown below) to investigate a triangle postulate. He moves the straw pieces to make triangles that have been translated, rotated, and reflected from an original position. The end of one piece is always touching the end of another piece. Which postulate could Zhan be investigating using only these straw pieces and no other tools?

2 inches	
3 inches	
4 inches	1 Se march and
(Note: Not to sca	ale.)

- A. The sum of the measures of the interior angles of all triangles is 180°.
- B. If three sides of one triangle are congruent to three sides of a second triangle then, the triangles are congruent.
- C. The sum of the squares of the lengths of the two shorter sides of a triangle is equal to the square of the length of the longest side of a triangle.
- D. If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the triangles are congruent.

3. Consider $\triangle ABC$ that has been transformed through rigid motions and its image is compared to $\triangle XYZ$. Determine if the given information is sufficient to draw the provided conclusion. Explain your answers.

Given	Conclusion	O TRUE	O FALSE
$\angle A \cong \angle X$			
$\angle B \cong \angle Y$	$\Delta ABC \cong \Delta XYZ$		
$\angle C \cong \angle Z$			
Given	Conclusion	O TRUE	O FALSE
$\angle A \cong \angle X$			
$\angle B \cong \angle Y$	$\Delta ABC \cong \Delta XYZ$		
$\overline{BC} \cong \overline{YZ}$			
Given	Conclusion	O TRUE	O FALSE
$\angle A \cong \angle X$			
$\overline{AB} \cong \overline{XY}$	$\Delta ABC \cong \Delta XYZ$		
$\overline{BC} \cong \overline{YZ}$			

- 4. For two isosceles right triangles, what is not enough information to prove congruence?
 - A. The lengths of all sides of each triangle.
 - B. The lengths of the hypotenuses for each triangle.
 - C. The lengths of a pair of corresponding legs.
 - D. The measures of the non-right angles in each triangle.
- 5. For two triangles with identical orientation, what rigid motion is necessary for SAS congruence to be shown?

- A. Translation
- B. Rotation
- C. Reflection
- D. Dilation

MAFS.912.G-CO.3.9 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses theorems about	completes no more than two steps	completes a proof for	creates a proof, given
parallel lines with one	of a proof using theorems about	vertical angles are	statements and reasons, for
transversal to solve	lines and angles; solves problems	congruent, alternate interior	points on a perpendicular
problems; uses the vertical	using parallel lines with two to	angles are congruent, and	bisector of a line segment are
angles theorem to solve	three transversals; solves problems	corresponding angles are	exactly those equidistant
problems	about angles using algebra	congruent	from the segment's endpoints

1. Which statements should be used to prove that the measures of angles 1 and 5 sum to 180°?

- A. Angles 1 and 8 are congruent as corresponding angles; angles 5 and 8 form a linear pair.
- B. Angles 1 and 2 form a linear pair; angles 3 and 4 form a linear pair.
- C. Angles 5 and 7 are congruent as vertical angles; angles 6 and 8 are congruent as vertical angles.
- D. Angles 1 and 3 are congruent as vertical angles; angles 7 and 8 form a linear pair.
- 2. Which statement justifies why the constructed line passing through the given point A is parallel to \overline{CD} ?

- A. When two lines are each perpendicular to a third line, the lines are parallel.
- B. When two lines are each parallel to a third line, the lines are parallel.
- C. When two lines are intersected by a transversal and alternate interior angles are congruent, the lines are parallel.
- D. When two lines are intersected by a transversal and corresponding angles are congruent, the lines are parallel.
- 3. In the diagram below, transversal \overrightarrow{TU} intersects \overrightarrow{PQ} and \overrightarrow{RS} at V and W, respectively.

If $m \angle TVQ = 5x - 22$ and $m \angle TVQ = 3x + 10$, for which value of x is $\overrightarrow{PQ} \parallel \overrightarrow{RS}$,?

- A. 6
- B. 16
- C. 24
- D. 28

4. Peach Street and Cherry Street are parallel. Apple Street intersects them, as shown in the diagram below.


```
If m \angle 1 = 2x + 36 and m \angle 2 = 7x - 9, what is m \angle 1?
```

- A. 9
- B. 17
- C. 54
- D. 70
- 5. In the diagram below of isosceles triangle ABC, $\overline{AB} \cong \overline{CB}$ and angle bisectors \overline{AD} , \overline{BF} , and \overline{CE} are drawn and intersect at X.

If $m \angle BAC = 50^\circ$, find $m \angle AXC$.

MAFS.912.G-CO.3.10 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses theorems	completes no more than two steps in a proof	completes a proof for theorems	completes proofs using
about interior	using theorems (measures of interior angles of	about triangles; solves problems	the medians of a triangle
angles of a	a triangle sum to 180,; base angles of isosceles	by applying algebra using the	meet at a point; solves
triangle,	triangles are congruent, the segment joining	triangle inequality and the Hinge	problems by applying
exterior angle	midpoints of two sides of a triangle is parallel	theorem; solves problems for	algebra for the
of a triangle	to the third side and half the length) about	the midsegment of a triangle,	midsegment of a triangle,
	triangles; solves problems about triangles	concurrency of angle bisectors,	concurrency of angle
	using algebra; solves problems using the	and concurrency of	bisectors, and concurrency
	triangle inequality and the Hinge theorem	perpendicular bisectors	of perpendicular bisectors

- 1. What is the measure of $\angle B$ in the figure below?
 - A. 62°
 - B. 58°
 - C. 59°
 - D. 56°

2. In this figure, $l \mid m$. Jessie listed the first two steps in a proof that $\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$.

	Step	Justification
1	$\angle 2 \cong \angle 4$?
2	$\angle 3 \cong \angle 5$?

Which justification can Jessie give for Steps 1 and 2?

- A. Alternate interior angles are congruent.
- B. Corresponding angles are congruent.
- C. Vertical angles are congruent.
- D. Alternate exterior angles are congruent.

3. Given: $\overline{AD} \parallel \overline{EC}, \overline{AD} \cong \overline{EC}$

Prove: $\overline{AB} \cong \overline{CB}$

Shown below are the statements and reasons for the proof. They are not in the correct order.

Statement	Reason
I. △ABD ≅ △CBE	I. AAS
II. ∠ABD ≅∠EBC	II. Vertical angles are congruent.
III. $\overline{AD} \parallel \overline{EC}, \overline{AD} \cong \overline{EC}$	III. Given
IV. $\overline{AB} \cong \overline{CB}$	IV. Corresponding parts of congruent triangles are congruent.
V. ∠DAB ≃ ∠ECB	V. If two parallel lines are cut by a transversal, the alternate interior angles are congruent.

Which of these is the most logical order for the statements and reasons?

- A. I, II, III, IV, V
- B. III, II, V, I, IV
- C. III, II, V, IV, I
- D. II, V, III, IV, I
- 4. \overline{YQ} and \overline{XP} are altitudes to the congruent sides of isosceles triangle WXY.

Keisha is going to prove $\overline{YQ} \cong \overline{XP}$ by showing they are congruent parts of the congruent triangles QXY and PYX.

- A. AAS because triangle WXY is isosceles, its base angles are congruent. Perpendicular lines form right angles, which are congruent; and segment \overline{XY} is shared.
- B. SSS because segment \overline{QP} would be parallel to segment \overline{XY} .
- C. SSA because segment \overline{XY} is shared; segments \overline{XP} and \overline{YQ} are altitudes, and WXY is isosceles, so base angles are congruent.
- D. ASA because triangle WXY is isosceles, its base angles are congruent. Segment \overline{XY} is shared; and perpendicular lines form right angles, which are congruent.

5. The figure above represents a swing set. The supports on each side of the swing set are constructed from two 12foot poles connected by a brace at their midpoint. The distance between the bases of the two poles is 5 feet.

Part A What is the length of each brace?

Part B

Which theorem about triangles did you apply to find the solution in Part A?

6. In the diagram below, \overline{DE} , \overline{DF} , and \overline{EF} are midsegments of $\triangle ABC$.

The perimeter of quadrilateral ADEF is equivalent to

- A. AB + BC + AC
- B. $\frac{1}{2}AB + \frac{1}{2}AC$
- C. 2AB + 2AC
- D. AB + AC

MAFS.912.G-CO.3.11 EOC Practice

Level 2	Level 3	Level 4	Level 5
uses properties of	completes no more than two steps in a	creates proofs to show	proves that rectangles
parallelograms to find numerical	proof for opposite sides of a parallelogram	the diagonals of a	and rhombuses are
values of a missing side or angle	are congruent and opposite angles of a	parallelogram bisect	parallelograms, given
or select a true statement about	parallelogram are congruent; uses	each other, given	statements and
a parallelogram	theorems about parallelograms to solve	statements and reasons	reasons
	problems using algebra		

- 1. Two pairs of parallel line form a parallelogram. Becki proved that angles 2 and 6 are congruent. She is first used corresponding angles created by a transversal and then alternate interior angles. Which pairs of angles could she use?
 - A. 1 and 2 then 5 and 6
 - B. 4 and 2 then 4 and 6
 - C. 7 and 2 then 7 and 6
 - D. 8 and 2 then 8 and 6

- A. SAS: sides AP & PD and CP & PB with the angles in between
- B. SAS: sides AD & AP and CB & CP with the angles in between
- C. ASA: sides DP and PB with adjacent angles
- D. ASA: sides AD and BC with adjacent angles
- 3. In the diagram below of parallelogram STUV, SV = x + 3, VU = 2x 1, and TU = 4x 3.

- A. 2
- B. 4
- C. 5
- D. 7

4. The figure shows parallelogram ABCD with AE = 18.

Let $BE = x^2 - 48$ and let = 2x. What are the lengths of \overline{BE} and \overline{DE} ?

- 5. Ms. Davis gave her students all the steps of the proof below. One step is not needed. Given: *ABCD is a parallelogram*
 - Prove: $\triangle ABD \cong \triangle CDB$

Which step is not necessary to complete this proof?

- A. Step 1
- B. Step 2
- C. Step 3
- D. Step 4

6. Given: Quadrilateral ABCD is a parallelogram with diagonals \overline{AC} and \overline{BD} intersecting at E

Prove: $\triangle AED \cong \triangle CEB$

Describe a single rigid motion that maps ΔAED onto ΔCEB .

7. The figure shows parallelogram PQRS on a coordinate plane. Diagonals \overline{SQ} and \overline{PR} intersect at point T.

Part A Find the coordinates of point Q in terms of a, b, and c.

```
Q(,)
```

Part B

Since PQRS is a parallelogram, \overline{SQ} and \overline{PR} bisect each other. Use the coordinates to verify that \overline{SQ} and \overline{PR} bisect each other.

- 8. Parallelogram ABCD has coordinates A(0,7) and C(2,1). Which statement would prove that ABCD is a rhombus?
 - A. The midpoint of \overline{AC} is (1,4).
 - B. The length of \overline{BD} is $\sqrt{40}$.
 - C. The slope of \overline{BD} is $\frac{1}{2}$
 - D. The slope of \overline{AB} is $\frac{1}{3}$

9. Missy is proving the theorem that states that opposite sides of a parallelogram are congruent.

Missy is proving the theorem that states that opposite sides of a parallelogram are congruent.

Given: Quadrilateral ABCD is a parallelogram. Prove: $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$

Missy's incomplete proof is shown.

	Statement		Reason
1.	Quadrilateral ABCD is a parallelogram.	1.	given
2.	AB CD; BC DA	2.	definition of parallelogram
3.	?	3.	?
4.	AC ≅ AC	4.	reflexive property
5.	∆ABC ≅ ∆CDA	5.	angle-side-angle congruence postulate
6.	AB ≅ CD and BC ≅ DA	6.	Corresponding parts of congruent triangles are congruent (CPCTC).

Which statement and reason should Missy insert into the chart as step 3 to complete the proof?

- A. $\overline{BD} \cong \overline{BD}$; reflexive property
- B. $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$; reflexive property
- C. $\angle ABD \cong \angle CDB$ and $\angle ADB \cong \angle CBD$; When parallel lines are cut by a transversal, alternate interior angles are congruent.
- D. $\angle BAC \cong \angle DCA$ and $\angle BCA \cong \angle DAC$; When parallel lines are cut by a transversal, alternate interior angles are congruent.

MAFS.912.G-CO.4.12 EOC Practice

Level 2	Level 3	Level 4	Level 5
chooses a visual	identifies, sequences, or reorders steps in a	identifies sequences or	explains steps in a
or written step in	construction: copying a segment, copying an angle,	reorders steps in a	construction
a construction	bisecting a segment, bisecting an angle, constructing	construction of an equilateral	
	perpendicular lines, including the perpendicular	triangle, a square, and a	
	bisector of a line segment, and constructing a line	regular hexagon inscribed in a	
	parallel to a given line through a point not on the line	circle	

1. Which triangle was constructed congruent to the given triangle?

- A. Triangle 1
- B. Triangle 2
- C. Triangle 3
- D. Triangle 4
- 2. A student used a compass and a straightedge to bisect ∠ABC in this figure.

Which statement BEST describes point S?

- A. Point S is located such that SC = PQ.
- B. Point S is located such that SA = PQ.
- C. Point S is located such that PS = BQ.
- D. Point S is located such that QS = PS.

3. What is the first step in constructing congruent angles?

- A. Draw ray DF.
- B. From point A, draw an arc that intersects the sides of the angle at point B and C.
- C. From point D, draw an arc that intersects the sides of the angle at point E and F.
- D. From points A and D, draw equal arcs that intersects the rays AC and DF.
- 4. Melanie wants to construct the perpendicular bisector of line segment AB using a compass and straightedge.

Which diagram shows the first step(s) of the construction?

MAFS.912.G-CO.4.13 EOC Practice

Level 2	Level 3	Level 4	Level 5
chooses a visual	identifies, sequences, or reorders steps in a	identifies sequences or	explains steps in a
or written step in	construction: copying a segment, copying an angle,	reorders steps in a	construction
a construction	bisecting a segment, bisecting an angle, constructing	construction of an equilateral	
	perpendicular lines, including the perpendicular	triangle, a square, and a	
	bisector of a line segment, and constructing a line	regular hexagon inscribed in a	
	parallel to a given line through a point not on the line	circle	

1. The radius of circle O is r. A circle with the same radius drawn around P intersects circle O at point R. What is the measure of angle ROP?

- A. 30°
- B. 60°
- C. 90°
- D. 120°
- 2. Carol is constructing an equilateral triangle with P and R being two of the vertices. She is going to use a compass to draw circles around P and R. What should the radius of the circles be?

3. The figure below shows the construction of the angle bisector of $\angle AOB$ using a compass. Which of the following statements must always be true in the construction of the angle bisector? Select **Yes** or **No** for each statement.

4. Daya is drawing a square inscribed in a circle using a compass and a straightedge. Her first two steps are shown.

Which is the best step for Daya to do next?

2016-2017 Congruency, Similarity, Right Triangles, and Trigonometry – Student Packet

- 5. Carolina wanted to construct a polygon inscribed in a circle by paper folding. She completed the following steps:
 - Start with a paper circle. Fold it in half. Make a crease.
 - Take the half circle and fold it in thirds. Crease along the sides of the thirds.
 - Open the paper. Mark the intersection points of the creases with the circle.
 - Connect adjacent intersection points on the circle with segments.

Which polygon was Carolina most likely trying to construct?

- A. Regular nonagon
- B. Regular octagon
- C. Regular hexagon
- D. Regular pentagon

MAFS.912.G-SRT.1.1 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies the	chooses the properties of dilations when a dilation is	explains why a dilation takes a	explains whether a
scale factors of	presented on a coordinate plane, as a set of ordered	line not passing through the	dilation presented on
dilations	pairs, as a diagram, or as a narrative; properties are:	center of dilation to a parallel	a coordinate plane, as
	a dilation takes a line not passing through the center	line and leaves a line passing	a set of ordered pairs,
	of the dilation to a parallel line and leaves a line	through the center unchanged	as a diagram, or as a
	passing through the center unchanged; the dilation	or that the dilation of a line	narrative correctly
	of a line segment is longer or shorter in the ratio	segment is longer or shorter in	verifies the properties
	given by the scale factor	ratio given by the scale factor	of dilations

1. Line b is defined by the equation y = 8 - x. If line b undergoes a dilation with a scale factor of 0.5 and center P, which equation will define the image of the line?

- $A. \quad y = 4 x$
- B. y = 5 x
- C. y = 8 x
- D. y = 11 x
- 2. GH = 1. A dilation with center H and a scale factor of 0.5 is applied. What will be the length of the image of the segment GH?

- A. 0
- B. 0.5
- C. 1
- D. 2
- 3. The vertices of square *ABCD* are A(3, 1), B(3, -1), C(5, -1), and D(5, 1). This square is dilated so that A' is at (3, 1) and C' is at (8, -4). What are the coordinates of D'?
 - A. (6, -4)
 - B. (6,−4)
 - C. (8,1)
 - D. (8,4)

4. Rosa graphs the line y = 3x + 5. Then she dilates the line by a factor of $\frac{1}{5}$ with (0, 7) as the center of dilation.

Which statement best describes the result of the dilation?

- A. The result is a different line $\frac{1}{5}$ the size of the original line.
- B. The result is a different line with a slope of 3.
- C. The result is a different line with a slope of $-\frac{1}{3}$.
- D. The result is the same line.
- 5. The figure shows line AC and line PQ intersecting at point B. Lines A'C' and P'Q' will be the images of lines AC and PQ, respectively, under a dilation with center P and scale factor 2.

Which statement about the image of lines AC and PQ would be true under the dilation?

- A. Line A'C' will be parallel to line AC, and line P'Q' will be parallel to line PQ.
- B. Line A'C' will be parallel to line AC, and line P'Q' will be the same line as line PQ.
- C. Line A'C' will be perpendicular to line AC, and line P'Q' will be parallel to line PQ.
- D. Line A'C' will be perpendicular to line AC, and line P'Q' will be the same line as line PQ.

- 6. A line that passes through the points whose coordinates are (1,1) and (5,7) is dilated by a scale factor of 3 and centered at the origin. The image of the line
 - A. is perpendicular to the original line
 - B. is parallel to the original line
 - C. passes through the origin
 - D. is the original line
- 7. In the diagram below, \overline{CD} is the image of \overline{AB} after a dilation of scale factor k with center E.

Which ratio is equal to the scale factor k of the dilation?

A.	EC
	EA
R	BA
ь.	EA
c	EA
C.	BA
D	EA
υ.	EC

8. On the graph below, point A(3,4) and \overline{BC} with coordinates B(4,3) and C(2,1) are graphed.

What are the coordinates of B' and C' after \overline{BC} undergoes a dilation centered at point A with a scale factor of 2?

- A. B'(5,2) and C'(1,-2)
- B. B'(6,1) and C'(0,-1)
- C. B'(5,0) and C'(1,-2)
- D. B'(5,2) and C'(3,0)

MAFS.912.G-SRT.1.2 EOC Practice

Level 2	Level 3	Level 4	Level 5
determines if	uses the definition of similarity in terms	shows that corresponding	explains using the definition of similarity
two given	of similarity transformations to decide if	angles of two similar	in terms of similarity transformations
figures are	two figures are similar; determines if	figures are congruent and	that corresponding angles of two figures
similar	given information is sufficient to	that their corresponding	are congruent and that corresponding
	determine similarity	sides are proportional	sides of two figures are proportional

- 1. When two triangles are considered similar but not congruent?
 - A. The distance between corresponding vertices are equal.
 - B. The distance between corresponding vertices are proportionate.
 - C. The vertices are reflected across the x-axis.
 - D. Each of the vertices are shifted up by the same amount.
- 2. Triangle ABC was reflected and dilated so that it coincides with triangle XYZ. How did this transformation affect the sides and angles of triangle ABC?

- A. The side lengths and angle measure were multiplied by $\frac{XY}{AB}$
- B. The side lengths were multiplied by $\frac{XY}{AB}$, while the angle measures were preserved
- C. The angle measures were multiplied by $\frac{XY}{AB}$, while the side lengths were preserved
- D. The angle measures and side lengths were preserved
- 3. In the diagram below, $\Delta ABC \sim \Delta DEF$.

If AB = 6 and AC = 8, which statement will justify similarity by SAS?

- A. $DE = 9, DF = 12, \text{ and } \angle A \cong \angle D$
- B. $DE = 8, DF = 10, \text{ and } \angle A \cong \angle D$
- C. $DE = 36, DF = 64, \text{ and } \angle C \cong \angle LF$
- D. $DE = 15, DF = 20, \text{ and } \angle C \cong \angle LF$

4. Kelly dilates triangle *ABC* using point P as the center of dilation and creates triangle A'B'C'. By comparing the slopes of *AC* and *CB* and *A'C'* and *C'B'*, Kelly found that $\angle ACB$ and $\angle A'C'B'$ are right angles.

Which set of calculations could Kelly use to prove $\triangle ABC$ is similar to $\triangle A'B'C'$?

A.
slope AB =
$$\frac{7 - (-7)}{2 - (-5)} = \frac{14}{7} = 2$$

slope A'B' = $\frac{7 - 3}{-3 - (-5)} = \frac{4}{2} = 2$

E	3.
	$AB^2 = 7^2 + 14^2$
	$A'B'^2 = 2^2 + 4^2$

С.	
$\tan \angle ABC = \frac{AC}{BC}$	$=\frac{7}{14}$
$\tan \angle A'B'C' = \frac{A'}{B'}$	$\frac{C'}{C'} = \frac{2}{4}$

C).
	$\angle ABC + \angle BCA + \angle CAB = 180^{\circ}$
	$\angle A'B'C' + \angle B'C'A' + \angle C'A'B' = 180^{\circ}$

5. In the diagram below, triangles *XYZ* and *UVZ* are drawn such that $\angle X \cong \angle U$ and $\angle XZY \cong \angle UZV$.

Describe a sequence of similarity transformations that shows ΔXYZ is similar to ΔUVZ .

MAFS.912.G-SRT.1.3 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies that two	establishes the AA	proves that two triangles are similar if two angles	proves the Pythagorean
triangles are similar	criterion for two triangles	of one triangle are congruent to two angles of	theorem using similarity
using the AA criterion	to be similar by using the	the other triangle, using the properties of	
	properties of similarity	similarity transformations; uses triangle	
	transformations	similarity to prove theorems about triangles	

1. Kamal dilates triangle ABC to get triangle A'B'C'. He knows that the triangles are similar because of the definition of similarity transformations. He wants to demonstrate the angle-angle similarity postulate by proving $\angle BAC \cong \angle B'A'C'$ and $\angle ABC \cong \angle A'B'C'$.

Kamal makes this incomplete flow chart proof.

What reason should Kamal add at all of the question marks in order to complete the proof?

- A. Two non-vertical lines have the same slope if and only if they are parallel.
- B. Angles supplementary to the same angle or to congruent angles are congruent.
- C. If two parallel lines are cut by a transversal, then each pair of corresponding angles is congruent.
- D. If two parallel lines are cut by a transversal, then each pair of alternate interior angles is congruent.
- 2. Given: AD = 6; DC = 3; BE = 4; and EC = 2Prove: $\triangle CDE \sim \triangle CAB$

	Statements	Reasons
1.		Given
2.	CA = CD + DA $CB = CE + EB$	
3.	$\frac{CA}{CD} = \frac{9}{3} = 3$; $\frac{CB}{CE} = \frac{6}{2} = 3$	
4.		Transitive Property
5.		
6.	$\Delta CDE \sim \Delta CAB$	

MAFS.912.G-SRT.2.4 EOC Practice

Level 2	Level 3	Level 4	Level 5
identifies that two	establishes the AA	proves that two triangles are similar if two angles	proves the Pythagorean
triangles are similar	criterion for two triangles	of one triangle are congruent to two angles of	theorem using similarity
using the AA criterion	to be similar by using the	the other triangle, using the properties of	
	properties of similarity	similarity transformations; uses triangle	
	transformations	similarity to prove theorems about triangles	

1. Lines AC and FG are parallel. Which statement should be used to prove that triangles ABC and DBE are similar?

- A. Angles BDE and BCA are congruent as alternate interior angles.
- B. Angles BAC and BEF are congruent as corresponding angles.
- C. Angles BED and BCA are congruent as corresponding angles.
- D. Angles BDG and BEF are congruent as alternate exterior angles.
- 2. A diagram from a proof of the Pythagorean Theorem is shown. Which statement would NOT be used in the proof?

A.
$$(AB)^2 + (AC)^2 = (BC)[(BD) + (DC)] \Longrightarrow (AB)^2 + (AC)^2 = (BC)$$

- B. $\triangle BAC \sim \triangle BDA \sim \triangle ADC$
- C. $\frac{AB}{BC} = \frac{BD}{AB}$ and $\frac{AC}{BC} = \frac{DC}{AC}$
- D. $\triangle ABC$ is a right triangle with an altitude \overline{AD} .

3. Ethan is proving the theorem that states that if two triangles are similar, then the measures of the corresponding angle bisectors are proportional to the measures of the corresponding sides.

Given: $\Delta ABC \sim \Delta EFG$.

 \overline{BD} bisects $\angle ABC$, and \overline{FH} bisects $\angle EFG$.

Prove:
$$\frac{AB}{EF} = \frac{BD}{FH}$$

Ethan's incomplete flow chart proof is shown.

Which statement and reason should Ethan add at the question mark to best continue the proof?

- A. $\triangle ABD \sim \triangle EFH$; AA similarity
- B. $\angle BCA \cong \angle FGE$; definition of similar triangles
- C. $\frac{AB}{BC} = \frac{EF}{GH}$; definition of similar triangles
- D. $m \angle ADB + m \angle ABD + m \angle BAD = 180^\circ$; $m \angle EFH + m \angle EHF + m \angle FEH = 180^\circ$; Angle Sum Theorem

4. In the diagram, $\triangle ABC$ is a right triangle with right angle *C*, and \overline{CD} is an altitude of $\triangle ABC$. Use the fact that $\triangle ABC \sim \triangle ACD \sim \triangle CBD$ to prove $a^2 + b^2 = c^2$

Statements	Reasons

MAFS.912.G-SRT.2.5 EOC Practice

Level 2	Level 3	Level 4	Level 5
finds measures of sides	solves problems involving triangles,	completes proofs about	proves conjectures about
and angles of	using congruence and similarity	relationships in geometric	congruence or similarity in
congruent and similar	criteria; provides justifications about	figures by using congruence	geometric figures, using
triangles when given a	relationships using congruence and	and similarity criteria for	congruence and similarity
diagram	similarity criteria	triangles	criteria

1. Given the diagram below, what is the value of x?

- A. 13.5
- B. 14.6
- C. 15.5
- D. 16.6
- 2. A scale model of the Millennium Dome in Greenwich, England, was constructed on a scale of 100 meters to 1 foot. The cable supports are 50 meters high and form a triangle with the cables. How high are the cable supports on the scale model that was built?

- A. 0.5 foot
- B. 1 foot
- C. 1.5 feet
- D. 2 feet

- 3. Hector knows two angles in triangle A are congruent to two angles in triangle B. What else does Hector need to know to prove that triangles A and B are similar?
 - A. Hector does not need to know anything else about triangles A and B.
 - B. Hector needs to know the length of any corresponding side in both triangles.
 - C. Hector needs to know all three angles in triangle A are congruent to the corresponding angles in triangle B.
 - D. Hector needs to know the length of the side between the corresponding angles on each triangle.
- 4. Figure ABCD, to the right, is a parallelogram.

What is the measure of $\angle ACD$?

- A. 59°
- B. 60°
- C. 61°
- D. 71°

5. In the diagram below, $\Delta JKL \cong \Delta ONM$.

Based on the angle measures in the diagram, what is the measure, in degrees, of $\angle N$? Enter your answer in the box.

6. In $\triangle SCU$ shown below, points T and 0 are on \overline{SU} and \overline{CU} , respectively. Segment \overline{OT} is drawn so that $\angle C \cong \angle OTU$.

- If TU = 4, OU = 5, and OC = 7, what is the length of \overline{ST} ?
- A. 5.6
- B. 8.75
- C. 11
- D. 15
- 7. In the diagram below, \overline{CD} is the altitude drawn to the hypotenuse \overline{AB} of right triangle ABC.

Which lengths would not produce an altitude that measures $6\sqrt{2}$?

- A. AD = 2 and DB = 36B. AD = 3 and AB = 24
- C. AD = 6 and DB = 12
- D. AD = 8 and AB = 17
- 8. To find the height of a lamppost at a park, Rachel placed a mirror on the ground 20 feet from the base of the lamppost. She then stepped back 4 feet so that she could see the top of the lamp post in the center of the mirror. Rachel's eyes are 5 feet 6 inches above the ground. What is the height, in feet, of the lamppost?

MAFS.912.G-SRT.3.8 EOC Practice

Level 2	Level 3	Level 4	Level 5
calculates unknown side	solves for sides of right	assimilates that the ratio of two sides	uses the modeling context to
lengths using the	triangles using	in one triangle is equal to the ratio of	solve problems that require
Pythagorean theorem	trigonometric ratios and	the corresponding two sides of all	more than one trigonometric
given a picture of a right	the Pythagorean	other similar triangles leading to	ratio and/or the Pythagorean
triangle; recognizes the	theorem in applied	definitions of trigonometric ratios for	theorem; solves for sides of
sine, cosine, or tangent	problems; uses the	acute angles; explains the relationship	right triangles using
ratio when given a picture	relationship between	between the sine and cosine of	trigonometric ratios and the
of a right triangle with two	sine and cosine of	complementary angles; solves for	Pythagorean theorem when
sides and an angle labeled	complementary angles	missing angles of right triangles using	side lengths and/or angles are
		sine, cosine, and tangent	given using variables

1. A 30-foot long escalator forms a 41° angle at the second floor. Which is the closest height of the first floor?

- A. 20 feet
- B. 22.5 feet
- C. 24.5 feet
- D. 26 feet
- 2. Jane and Mark each build ramps to jump their remote-controlled cars. Both ramps are right triangles when viewed from the side. The incline of Jane's ramp makes a 30-degree angle with the ground, and the length of the inclined ramp is 14 inches. The incline of Mark's ramp makes a 45-degree angle

Part A

What is the horizontal length of the base of Jane's ramp and the base of Mark's ramp? Enter your answer in the box.

Part B

Which car is launched from the highest point? Enter your answer in the box.

with the ground, and the length of the inclined ramp is 10 inches.

3. In the diagram below, the line of sight from the park ranger station, P, to the lifeguard chair, L, on the beach of a lake is perpendicular to the path joining the campground, C, and the first aid station, F. The campground is 0.25 mile from the lifeguard chair. The straight paths from both the campground and first aid station to the park ranger station are perpendicular.

If the path from the park ranger station to the campground is 0.55 mile, determine and state, to the nearest hundredth of a mile, the distance between the park ranger station and the lifeguard chair. Gerald believes the distance from the first aid station to the campground is at least 1.5 miles. Is Gerald correct? Justify your answer.

4. The diagram below shows a ramp connecting the ground to a loading platform 4.5 feet above the ground. The ramp measures 11.75 feet from the ground to the top of the loading platform.

Determine and state, to the nearest degree, the angle of elevation formed by the ramp and the ground.

- 5. In $\triangle ABC$, the complement of $\angle B$ is $\angle A$. Which statement is always true?
 - A. $tan \angle A = tan \angle B$
 - B. $sin \angle A = sin \angle LB$
 - C. $cos \angle A = tan \angle B$
 - D. $sin \angle A = cos \angle B$

6. In the figure below, a pole has two wires attached to it, one on each side, forming two right triangles.

Based on the given information, answer the questions below. How tall is the pole? Enter your answer in the box.

How far from the base of the pole does Wire 2 attach to the ground? Enter your answer in the box.

How long is Wire 1? Enter your answer in the box.

7. As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?

- A. 29.7
- B. 16.6
- C. 13.5
- D. 11.2

8. Leah needs to add a wheelchair ramp over her stairs. The ramp will start at the top of the stairs. Each stair makes a right angle with each riser.

Note: Not to scale

Part A

The ramp must have a maximum slope of $\frac{1}{12}$. To the nearest hundredth of a foot, what is the shortest length of ramp that Leah can build and not exceed the maximum slope? Enter your answer in the box.

Part B

Leah decides to build a ramp that starts at the top of the stairs and ends 18 feet from the base of the bottom stair. To the nearest hundredth of a foot, what is the length of the ramp? Enter your answer in the box.

Part C

To the nearest tenth of a degree, what is the measure of the angle created by the ground and the ramp that Leah builds in part B? Enter your answer in the box.

MAFS.912.G-SRT.3.6 EOC Practice

Level 2	Level 3	Level 4	Level 5
calculates unknown side	solves for sides of right	assimilates that the ratio of two sides	uses the modeling context to
lengths using the	triangles using	in one triangle is equal to the ratio of	solve problems that require
Pythagorean theorem	trigonometric ratios and	the corresponding two sides of all	more than one trigonometric
given a picture of a right	the Pythagorean	other similar triangles leading to	ratio and/or the Pythagorean
triangle; recognizes the	theorem in applied	definitions of trigonometric ratios for	theorem; solves for sides of
sine, cosine, or tangent	problems; uses the	acute angles; explains the relationship	right triangles using
ratio when given a picture	relationship between	between the sine and cosine of	trigonometric ratios and the
of a right triangle with two	sine and cosine of	complementary angles; solves for	Pythagorean theorem when
sides and an angle labeled	complementary angles	missing angles of right triangles using	side lengths and/or angles are
		sine, cosine, and tangent	given using variables

1. What is the sine ratio of $\angle P$ in the given triangle?

		M 15
A.	<u>8</u> 17	
В.	<u>8</u> 15	8 17
C.	15 17	P
D.	<u>15</u> 8	

- 2. Kendall drew a right triangle. The tangent value for one angle in her triangle is 1.8750. Which set of side lengths could belong to a right triangle similar to the triangle Kendall drew?
 - A. 16 cm, 30 cm, 35 cm
 - B. 8 cm, 15 cm, 17 cm
 - C. 6 cm, 8 cm, 10 cm
 - D. 1.875 cm, 8 cm, 8.2 cm
- 3. Angles F and G are complementary angles.
 - As the measure of angle F varies from a value of x to a value of y, sin(F) increases by 0.2.

How does cos(G) change as F varies from x to y?

- A. It increases by a greater amount.
- B. It increases by the same amount.
- C. It increases by a lesser amount.
- D. It does not change.

∠Y

∠Z

5. The figure shows right $\triangle ABC$.

Of the listed values are equal to the sine of *B*? Select ALL that apply.

- $\frac{b}{c}$
- $\frac{c}{a}$
- $\frac{b}{a}$
- The cosine of B
- The cosine of C
- The cosine of $(90^{\circ} B)$
- The sine of $(90^{\circ} C)$

MAFS.912.G-SRT.3.7 EOC Practice

Level 2	Level 3	Level 4	Level 5
calculates unknown side	solves for sides of right	assimilates that the ratio of two sides	uses the modeling context to
lengths using the	triangles using	in one triangle is equal to the ratio of	solve problems that require
Pythagorean theorem	trigonometric ratios and	the corresponding two sides of all	more than one trigonometric
given a picture of a right	the Pythagorean	other similar triangles leading to	ratio and/or the Pythagorean
triangle; recognizes the	theorem in applied	definitions of trigonometric ratios for	theorem; solves for sides of
sine, cosine, or tangent	problems; uses the	acute angles; explains the relationship	right triangles using
ratio when given a picture	relationship between	between the sine and cosine of	trigonometric ratios and the
of a right triangle with two	sine and cosine of	complementary angles; solves for	Pythagorean theorem when
sides and an angle labeled	complementary angles	missing angles of right triangles using	side lengths and/or angles are
		sine, cosine, and tangent	given using variables

1. Explain why cos(x) = sin(90 - x) for x such that 0 < x < 90

- 2. Which is equal to $sin 30^\circ$?
 - A. cos 30°
 - B. cos 60°
 - C. sin 60°
 - D. sin 70°
- 3. Adnan states if $cos30^{\circ} \approx 0.866$, then $sin30^{\circ} \approx 0.866$. Which justification correctly explains whether or not Adnan is correct?
 - A. Adnan is correct because $cosx^{\circ}$ and $sinx^{\circ}$ are always equivalent in any right triangle.
 - B. Adnan is correct because $cosx^{\circ}$ and $sinx^{\circ}$ are only equivalent in a $30^{\circ} 60^{\circ} 90^{\circ}$ triangle.
 - C. Adnan is incorrect because $cosx^{\circ}$ and $sin(90 x)^{\circ}$ are always equivalent in any right triangle.
 - D. Adnan is incorrect because only $cosx^{\circ}$ and $cos(90 x)^{\circ}$ are equivalent in a 30°-60°-90° triangle.
- 4. In right triangle ABC, $m \angle B \neq m \angle C$. Let $\sin B = r$ and $\cos B = s$. What is $\sin C \cos C$?
 - A. r + s
 - B. *r s*
 - C. *s r*
 - D. $\frac{r}{s}$
- 5. In right triangle ABC with the right angle at C, sin A = 2x + 0.1 and cos B = 4x 0.7.

Determine and state the value of x. Enter your answer in the box.